National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
The immune response of naïve mice infected with the neuropathogenic schistosome Trichobilharzia regenti
Macháček, Tomáš
Helminth neuroinfections represent a serious health issue, but the mechanisms of the host immune response often remain neglected despite the fact they might contribute to pathogenesis. This is partly due to the unavailability of clinical samples and the lack of suitable laboratory models. Herein, I focused on the characterization of several aspects of the immune response of mice infected with the neuropathogenic avian schistosome Trichobilharzia regenti. After the percutaneous infection of mice (accidental hosts), most T. regenti schistosomula are entrapped and eliminated in the skin, but the parasite antigens initiating the protective immune reaction are not known. Our in vitro experiments revealed that T. regenti cathepsin B2, a cysteine peptidase used for the skin penetration, activates bone marrow-derived dendritic cells much stronger than the parasite homogenate, suggesting its role in initiating the mixed type1/2 host immune response. However, some schistosomula manage to escape from the skin and continue their migration to the spinal cord. Here they crawl preferentially within the white matter which we demonstrated by the robust 3D imaging techniques, ultramicroscopy and micro-CT. The invasion of the spinal cord is accompanied by striking hypertrophy of astrocytes and microglia. We showed...
The immune response of naïve mice infected with the neuropathogenic schistosome Trichobilharzia regenti
Macháček, Tomáš
Helminth neuroinfections represent a serious health issue, but the mechanisms of the host immune response often remain neglected despite the fact they might contribute to pathogenesis. This is partly due to the unavailability of clinical samples and the lack of suitable laboratory models. Herein, I focused on the characterization of several aspects of the immune response of mice infected with the neuropathogenic avian schistosome Trichobilharzia regenti. After the percutaneous infection of mice (accidental hosts), most T. regenti schistosomula are entrapped and eliminated in the skin, but the parasite antigens initiating the protective immune reaction are not known. Our in vitro experiments revealed that T. regenti cathepsin B2, a cysteine peptidase used for the skin penetration, activates bone marrow-derived dendritic cells much stronger than the parasite homogenate, suggesting its role in initiating the mixed type1/2 host immune response. However, some schistosomula manage to escape from the skin and continue their migration to the spinal cord. Here they crawl preferentially within the white matter which we demonstrated by the robust 3D imaging techniques, ultramicroscopy and micro-CT. The invasion of the spinal cord is accompanied by striking hypertrophy of astrocytes and microglia. We showed...
The immune response of naïve mice infected with the neuropathogenic schistosome Trichobilharzia regenti
Macháček, Tomáš ; Horák, Petr (advisor) ; Bilej, Martin (referee) ; Schabussova, Irma (referee)
Helminth neuroinfections represent a serious health issue, but the mechanisms of the host immune response often remain neglected despite the fact they might contribute to pathogenesis. This is partly due to the unavailability of clinical samples and the lack of suitable laboratory models. Herein, I focused on the characterization of several aspects of the immune response of mice infected with the neuropathogenic avian schistosome Trichobilharzia regenti. After the percutaneous infection of mice (accidental hosts), most T. regenti schistosomula are entrapped and eliminated in the skin, but the parasite antigens initiating the protective immune reaction are not known. Our in vitro experiments revealed that T. regenti cathepsin B2, a cysteine peptidase used for the skin penetration, activates bone marrow-derived dendritic cells much stronger than the parasite homogenate, suggesting its role in initiating the mixed type1/2 host immune response. However, some schistosomula manage to escape from the skin and continue their migration to the spinal cord. Here they crawl preferentially within the white matter which we demonstrated by the robust 3D imaging techniques, ultramicroscopy and micro-CT. The invasion of the spinal cord is accompanied by striking hypertrophy of astrocytes and microglia. We showed...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.